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1 General Resources

There are some excellent free MIT lectures on Linear Algebra here:
http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010

2 Matrix Decomposition

2.1 LU and Cholesky

Cholesky decomposition is for symmetric matrices, and L = U>. An algorithm for LU decompo-
sition without pivoting is below (i.e this will not work for Question 3 of the examples sheet):

for k = 0 to n− 1 do
for j = 0 to k + 1 do

ajk ← ajk/akk;
for j = 0 to k + 1 do

aji ← aji − ajkaki;
end

end

end

3 Solution of Linear Systems

3.1 Direct Methods

These methods involve performing Gaussian elimination to find the solution.

3.2 Indirect Methods

These methods involve providing an estimate of the solution and iterating to the correct one.
Gauss Seidel will be used here, and the algorithm is as follows:
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Keep performing the above calculation for the required number of iterations or until the residual
reduces to a prescribed value.

3.3 Matrix Conditioning

A lot of methods are available for improving the conditioning of a matrix. This is important for
indirect methods to both converge and solve a matrix quickly. The condition number of a matrix
is calculated as follows (using norms):

κ = ||A|| ||A−1|| (1)
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It tells us the stability of a matrix when we perform operations such as LU decomposition. If it
is large then finding the inverse may be difficult numerically. There is an example of this in your
notes.

4 Supervision Activities

Let’s use Ruby to decompose some matrices. There are various forms of the LU decomposition.
Either L or U may have unity diagonals, or L = U> and both have the same diagonal (known as
Cholesky’s decomposition and applied to square, symmetric matrices).

Q1 How could you work out the determinant of a matrix from its LU matrices? Code it.

Q2 What is the order of LU decomposition (i.e. how the number of operations scales with an
increasing matrix size)? Try it on the following matrices:

[
2 1
8 7

] 1 1 1
1 3 3
1 3 5




2 3 4 5
0 −1 2 1
0 0 2 4
0 3 −6 0


Use Excel to plot the number of operations against the size of the matrix, and fit a power law
curve to it.

Q3 (Taken from 2006 P2 Q3) Find the LU decomposition of the following matrix by hand and
compare to the output of the Ruby program. What’s the deteminant?: 1 0 1

2 1 1
3 1 2


Can you see how many solutions to this matrix there are for A.x = [1, 1, c]>, for specific values
of c, just by examining it?
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5 Examples Paper 3

Question 1

u+ v + w = 2

u+ 3v + 3w = 0

u+ 3v + 5w = 2 1 1 1 2
1 3 3 0
1 3 5 2


Pivot around a11: 1 1 1 2

0 2 2 −2
0 2 4 0


Pivot around a22: 1 1 1 2

0 2 2 −2
0 0 2 2


By back-substitution w = 1, v = −2 and u = 3.

Question 2

Part (a)

[
2 1
8 7

]
=

[
1 0
L21 1

] [
U11 U12

0 U22

]

U11 = 2

U12 = 1

L21U11 = 8

L21U12 + U22 = 7[
2 1
8 7

]
=

[
1 0
4 1

] [
2 1
0 3

]

Part (b)

 3 1 1
1 3 1
1 1 3

 =

 1 0 0
L21 1 0
L31 L32 1

 U11 U12 U13

0 U22 U23

0 0 U33


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U11 = 3

U12 = 1

U13 = 1

L21U11 = 1

L21U12 + U22 = 3

L21U13 + U23 = 1

L31U11 = 1

L31U12 + L32U22 = 1

L31U13 + L32U23 + U33 = 3

 3 1 1
1 3 1
1 1 3

 =

 1 0 0
1/3 1 0
1/3 1/4 1

 3 1 1
0 8/3 2/3
0 0 5/2



Part (c)

 1 1 1
1 4 4
1 4 8

 =

 1 0 0
L21 1 0
L31 L32 1

 U11 U12 U13

0 U22 U23

0 0 U33


U11 = 1

U12 = 1

U13 = 1

L21U11 = 1

L21U12 + U22 = 4

L21U13 + U23 = 4

L31U11 = 1

L31U12 + L32U22 = 4

L31U13 + L32U23 + U33 = 8

 1 1 1
1 4 4
1 4 8

 =

 1 0 0
1 1 0
1 1 1

 1 1 1
0 3 3
0 0 4


Part (d) Here we are solving CC−1 = I. 1 0 0

1 1 0
1 1 1

 1 1 1
0 3 3
0 0 4

 x
y
z

 =

 1
0
0


 1 0 0

1 1 0
1 1 1

 f
g
h

 =

 1
0
0

 ∴ [f, g, h]> = [1, −1, 0]>
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 1 1 1
0 3 3
0 0 4

 x
y
z

 =

 1
−1
0

 ∴ [x, y, z]> = [4/3, −1/3, 0]>

 1 0 0
1 1 0
1 1 1

 1 1 1
0 3 3
0 0 4

 x
y
z

 =

 0
1
0


 1 0 0

1 1 0
1 1 1

 f
g
h

 =

 0
1
0

 ∴ [f, g, h]> = [0, 1, −1]>

 1 1 1
0 3 3
0 0 4

 x
y
z

 =

 0
1
−1

 ∴ [x, y, z]> = [−1/3, 7/12, −1/4]>

 1 0 0
1 1 0
1 1 1

 1 1 1
0 3 3
0 0 4

 x
y
z

 =

 0
0
1


 1 0 0

1 1 0
1 1 1

 f
g
h

 =

 0
0
1

 ∴ [f, g, h]> = [0, 0, 1]>

 1 1 1
0 3 3
0 0 4

 x
y
z

 =

 0
0
1

 ∴ [x, y, z]> = [0, −1/4, 1/4]>

C =

 4/3 −1/3 0
−1/3 7/12 −1/4

0 −1/4 1/4



Question 3 A =

 1 1 1
1 1 3
2 5 8

 =

 1 0 0
L21 1 0
L31 L32 1

 U11 U12 U13

0 U22 U23

0 0 U33


U11 = 1

U12 = 1

U13 = 1

L21U11 = 1

L21U12 + U22 = 1

L21U13 + U23 = 3

L31U11 = 2

L31U12 + L32U22 = 5

L31U13 + L32U23 + U33 = 8
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A =

 1 0 0
1 1 0
2 0 1

 1 1 1
0 0 2
0 3 6



A =

 1 0 0
1 1 0
2 0 1

 1 0 0
0 0 1
0 1 0

 1 1 1
0 3 6
0 0 2


Question 4 A is symmetric.

A =

 1 3 5
3 12 18
5 18 30

 =

 1 0 0
L21 1 0
L31 L32 1

 U11 U12 U13

0 U22 U23

0 0 U33



A =

 1 3 5
3 12 18
5 18 30

 =

 1 0 0
3 1 0
5 1 1

 1 3 5
0 3 3
0 0 2


 1 0 0

3 1 0
5 1 1

 1 3 5
0 3 3
0 0 2

 =

 1 0 0
3 1 0
5 1 1

 1 0 0
0 3 0
0 0 2

 1 3 5
0 1 1
0 0 1

 U’ = L>

Question 5 A =

 1 3 2
1 −1 1
2 2 3

 =

 1 0 0
L21 1 0
L31 L32 1

 U11 U12 U13

0 U22 U23

0 0 U33



A =

 1 3 2
1 −1 1
2 2 3

 =

 1 0 0
1 1 0
2 1 1

 1 3 2
0 −4 −1
0 0 0


 1 0 0

1 1 0
2 1 1

 f
g
h

 =

 b1
b2
b3

 ,
 f
g
h

 =

 b1
b2 − b1

b3 − b2 − b1


 1 3 2

0 −4 −1
0 0 0

 x
y
z

 =

 b1
b2 − b1

b3 − b2 − b1


If b3 − b2 − b1 = 0 there are an infinite number of solutions, otherwise there are no solutions.

Ax = 0. 1 0 0
1 1 0
2 1 1

 f
g
h

 =

 0
0
0

 ,
 f
g
h

 =

 0
0
0


So can get solution for any z.
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